Capacitor Code Chart

Capacitor Color Codes for Identification Chart. Capacitors may be marked with 4 or more colored bands or dots. The colors encode the first and second most significant digits of the value, and the third color the decimal multiplier in picofarads. Additional bands have meanings which may vary from one type to another. The three-character code with the letter-number-letter format is used for capacitors with Class 2 and Class 3 dielectrics. C0G is a Class 1 dielectric, so it’s not included (more on this later). X5R and X7R are in Class 2, and Y5V is in Class 3. The first character indicates the lowest temperature that the capacitor can handle.

Capacitor uF - nF - pF Conversion Chart


To use this table, just read across. For example, 1uF is same 1,000nF or 1,000,000pF.

uF/ MFDnFpF/ MMFDuF/ MFDnFpF/ MMFD
1uF / MFD1000nF1000000pF(MMFD)0.001uF / MFD1nF1000pF(MMFD)
0.82uF / MFD820nF820000pF (MMFD)0.00082uF / MFD0.82nF820pF (MMFD)
0.8uF / MFD800nF800000pF (MMFD)0.0008uF / MFD0.8nF800pF (MMFD)
0.7uF / MFD700nF700000pF (MMFD)0.0007uF / MFD0.7nF700pF (MMFD)
0.68uF / MFD680nF680000pF (MMFD)0.00068uF / MFD0.68nF680pF (MMFD)
0.6uF / MFD600nF600000pF (MMFD)0.0006uF / MFD0.6nF600pF (MMFD)
0.56uF / MFD560nF560000pF (MMFD)0.00056uF / MFD0.56nF560pF (MMFD)
0.5uF / MFD500nF500000pF (MMFD)0.0005uF / MFD0.5nF500pF (MMFD)
0.47uF / MFD470nF470000pF (MMFD)0.00047uF / MFD0.47nF470pF (MMFD)
0.4uF / MFD400nF400000pF (MMFD)0.0004uF / MFD0.4nF400pF (MMFD)
0.39uF / MFD390nF390000pF (MMFD)0.00039uF / MFD0.39nF390pF (MMFD)
0.33uF / MFD330nF330000pF (MMFD)0.00033uF / MFD0.33nF330pF (MMFD)
0.3uF / MFD300nF300000pF (MMFD)0.0003uF / MFD0.3nF300pF (MMFD)
0.27uF / MFD270nF270000pF (MMFD)0.00027uF / MFD0.27nF270pF (MMFD)
0.25uF / MFD250nF250000pF (MMFD)0.00025uF / MFD0.25nF250pF (MMFD)
0.22uF / MFD220nF220000pF (MMFD)0.00022uF / MFD0.22nF220pF (MMFD)
0.2uF / MFD200nF200000pF (MMFD)0.0002uF / MFD0.2nF200pF (MMFD)
0.18uF / MFD180nF180000pF (MMFD)0.00018uF / MFD0.18nF180pF (MMFD)
0.15uF / MFD150nF150000pF (MMFD)0.00015uF / MFD0.15nF150pF (MMFD)
0.12uF / MFD120nF120000pF (MMFD)0.00012uF / MFD0.12nF120pF (MMFD)
0.1uF / MFD100nF100000pF (MMFD)0.0001uF / MFD0.1nF100pF (MMFD)
0.082uF / MFD82nF82000pF (MMFD)0.000082uF / MFD0.082nF82pF (MMFD)
0.08uF / MFD80nF80000pF (MMFD)0.00008uF / MFD0.08nF80pF (MMFD)
0.07uF / MFD70nF70000pF (MMFD)0.00007uF / MFD0.07nF70pF (MMFD)
0.068uF / MFD68nF68000pF (MMFD)0.000068uF / MFD0.068nF68pF (MMFD)
0.06uF / MFD60nF60000pF (MMFD)0.00006uF / MFD0.06nF60pF (MMFD)
0.056uF / MFD56nF56000pF (MMFD)0.000056uF / MFD0.056nF56pF (MMFD)
0.05uF / MFD50nF50000pF (MMFD)0.00005uF / MFD0.05nF50pF (MMFD)
0.047uF / MFD47nF47000pF (MMFD)0.000047uF / MFD0.047nF47pF (MMFD)
0.04uF / MFD40nF40000pF (MMFD)0.00004uF / MFD0.04nF40pF (MMFD)
0.039uF / MFD39nF39000pF (MMFD)0.000039uF / MFD0.039nF39pF (MMFD)
0.033uF / MFD33nF33000pF (MMFD)0.000033uF / MFD0.033nF33pF (MMFD)
0.03uF / MFD30nF30000pF (MMFD)0.00003uF / MFD0.03nF30pF (MMFD)
0.027uF / MFD27nF27000pF (MMFD)0.000027uF / MFD0.027nF27pF (MMFD)
0.025uF / MFD25nF25000pF (MMFD)0.000025uF / MFD0.025nF25pF (MMFD)
0.022uF / MFD22nF22000pF (MMFD)0.000022uF / MFD0.022nF22pF (MMFD)
0.02uF / MFD20nF20000pF (MMFD)0.00002uF / MFD0.02nF20pF (MMFD)
0.018uF / MFD18nF18000pF (MMFD)0.000018uF / MFD0.018nF18pF (MMFD)
0.015uF / MFD15nF15000pF (MMFD)0.000015uF / MFD0.015nF15pF (MMFD)
0.012uF / MFD12nF12000pF (MMFD)0.000012uF / MFD0.012nF12pF (MMFD)
0.01uF / MFD10nF10000pF (MMFD)0.00001uF / MFD0.01nF10pF (MMFD)
0.0082uF / MFD8.2nF8200pF (MMFD)0.0000082uF / MFD0.0082nF8.2pF (MMFD)
0.008uF / MFD8nF8000pF (MMFD)0.000008uF / MFD0.008nF8pF (MMFD)
0.007uF / MFD7nF7000pF (MMFD)0.000007uF / MFD0.007nF7pF (MMFD)
0.0068uF / MFD6.8nF6800pF (MMFD)0.0000068uF / MFD0.0068nF6.8pF (MMFD)
0.006uF / MFD6nF6000pF (MMFD)0.000006uF / MFD0.006nF6pF (MMFD)
0.0056uF / MFD5.6nF5600pF (MMFD)0.0000056uF / MFD0.0056nF5.6pF (MMFD)
0.005uF / MFD5nF5000pF (MMFD)0.000005uF / MFD0.005nF5pF (MMFD)
0.0047uF / MFD4.7nF4700pF (MMFD)0.0000047uF / MFD0.0047nF4.7pF (MMFD)
0.004uF / MFD4nF4000pF (MMFD)0.000004uF / MFD0.004nF4pF (MMFD)
0.0039uF / MFD3.9nF3900pF (MMFD)0.0000039uF / MFD0.0039nF3.9pF (MMFD)
0.0033uF / MFD3.3nF3300pF (MMFD)0.0000033uF / MFD0.0033nF3.3pF (MMFD)
0.003uF / MFD3nF3000pF (MMFD)0.000003uF / MFD0.003nF3pF (MMFD)
0.0027uF / MFD2.7nF2700pF (MMFD)0.0000027uF / MFD0.0027nF2.7pF (MMFD)
0.0025uF / MFD2.5nF2500pF (MMFD)0.0000025uF / MFD0.0025nF2.5pF (MMFD)
0.0022uF / MFD2.2nF2200pF (MMFD)0.0000022uF / MFD0.0022nF2.2pF (MMFD)
0.002uF / MFD2nF2000pF (MMFD)0.000002uF / MFD0.002nF2pF (MMFD)
0.0018uF / MFD1.8nF1800pF (MMFD)0.0000018uF / MFD0.0018nF1.8pF (MMFD)
0.0015uF / MFD1.5nF1500pF (MMFD)0.0000015uF / MFD0.0015nF1.5pF (MMFD)
0.0012uF / MFD1.2nF1200pF (MMFD)0.0000012uF / MFD0.0012nF1.2pF (MMFD)
0.001uF / MFD1nF1000pF (MMFD)……….0.000001uF / MFD0.001nF1pF (MMFD)

When reading schematics, repairing radios and buying capacitors, you often must convert between uF, nF and pF.
Paper and electrolytic capacitors are usually expressed in terms of uF (microfarads). Short forms for micro farad include
uF, mfd, MFD, MF and UF. Mica capacitors are usually expressed in terms of pF (micromicrofarads) (picofarads).
Short forms for micromicrofarads include pF, mmfd, MMFD, MMF, uuF and PF. A pF is one-millionth of a uF. In
between a pF and a uF is a nF which is one-one thousands of a uF. Converting back and forth between uF, nF
and pF can be confusing with all those darn decimal points to worry about. Below is a uF - nF- pF conversion chart.
Just print a copy and tape it to your workbench....it will come in handy. Have fun MAKEING

Tantalum Capacitor Color Codes
ChartsColorColor1st Figure2nd FigureMultiplierVoltage
Black
0 1 10
Brown 1 1 10
Red 2 2 100
Orange 3 3

Parallel Capacitance Math:
CT = C1 + C2 + C3
Series Capacitance Math:
1/CT = 1/C1 + 1/C2 + 1/C3
Yellow 4 4
6.3
Green 5 5
16
Blue 6 6
20

Violet7 7
Grey 8 8 0.01 25
White 9 9 0.1 3
Pink

35

Mica Capacitor Values
Charts Value Multiplier Letter Tolerance
0 1 B ± 0.1pF
1 10 C ± 0.25pF
2 100 D ± 0.5pF
3 1,000 F ± 1%
4 10,000 G ± 2%
5 100,000 H ± 3%
Parallel Capacitance Math:
CT = C1 + C2 + C3
Series Capacitance Math:
1/CT = 1/C1 + 1/C2 + 1/C3


J ± 5%
8 0.01 K ± 10%
9 0.1 M ± 20%

Usually the first two digits of the code represent part of the value; the third digit corresponds to the number of zeros to be added to the first two digits. This is the value in pf.

General Capacitance Code breaker Charts

pico-farad
(pF)

nano-farad
(nF)

micro-farad
(mF,uF or mfd)

capacitance
code

10001 or 1n0.001102
15001.5 or 1n50.0015152
22002.2 or 2n20.0022222
33003.3 or 3n30.0033332
47004.7 or 4n70.0047472
68006.8 or 6n80.0068682
1000010 or 10n0.01103
1500015 or 15n0.015153
2200022 or 22n0.022223
3300033 or 33n0.033333
4700047 or 47n0.047473
6800068 or 68n0.068683
100000100 or 100n0.1104
150000150 or 150n0.15154
220000220 or 220n0.22224
330000330 or 330n0.33334
470000470 or 470n0.47474

A common question when looking at ceramic capacitors is what do the temperature coefficient numbers/letters mean? These numbers will generally break down to a temperature range and the variation in capacitance over that specific range. The first thing you need to understand with what standard and class you are looking at. These are split between the International Electrotechnical Commission (IEC) and the Electronic Industries Alliance (EIA)

Smd Capacitor Code Chart

Smd capacitor code chart

Here is a chart on the different classes and definitions:

IEC/EN 603841 &
IEC/EN 60384-8/9/21/22
EIA RS-198
Class 1 ceramic caps offer high stability and low losses for resonant circuit applicationsClass I ceramic caps offer high stability and low losses for resonant circuit applications
Class 2 ceramic capacitors offer high volumetric efficiency for smoothing, by-pass, coupling and decoupling applicationsClass II (or written class 2) ceramic capacitors offer high volumetric efficiency with change of capacitance lower than −15% to +15% and a temperature range greater than −55 °C to +125 °C, for smoothing, by-pass, coupling and decoupling applications
Class 3 ceramic capacitors are barrier layer capacitors which are not standardized anymoreClass III (or written class 3) ceramic capacitors offer higher volumetric efficiency than EIA class II and typical change of capacitance by −22% to +56% over a lower temperature range of 10 °C to 55 °C. They can be substituted with EIA class 2- Y5U/Y5V or Z5U/Z5V capacitors
Class IV (or written class 4) ceramic capacitors are barrier layer capacitors which are not standardized anymore

With class definitions understood you can look how the temperature coefficients break down.

Class 1 per EIA-RS-198

Temperature coefficient α
10-6 /K Letter code
Multiplier of the temperature
coefficient Number code
Tolerance of the temperature
coefficient Letter code
C: 0.00: -1G: ± 30
B: 0.31: -10H ± 60
L: 0.82: −100J: ±120
A: 0.93: −1000K: ±250
M: 1.04: +1L: ±500
P: 1.56: +10M: ±1000
R: 2.27: +100N: ±2500
S: 3.38: +1000
T: 4.7
V: 5.6
U: 7.5

Class 1 per IEC/EN 60384-8/21 and EIA-RS-198

Ceramic namesTemperature coefficient α 10-6 /Kα-Tolerance 10-6 /KSub-classIEC/ EN- letter codeEIA letter code
P100100±301BAGM7G
NP00±301BCGC0G
N33−33±301BHGH2G
N75−75±301BLGL2G
N150−150±601BPHP2H
N220−220±601BRHR2H
N330−330±601BSHS2H
N470−470±601BTHT2H
N750−750±1201BUJU2J
N1000−1000±2501FQKQ3K
N1500−1500±2501FVKP3K
Capacitor Code Chart

Looking at these charts you see, an “NP0” capacitor with EIA code “C0G” will have 0 drift, with a tolerance of ±30 ppm/K, while an “N1500” with the code “P3K” will have −1500 ppm/K drift, with a maximum tolerance of ±250 ppm/°C.

Note that the IEC and EIA capacitor codes are industry capacitor codes and not the same as military capacitor codes.

Class 2 per EIA RS-198

Letter Code for Low TempNumber Code for High TempLetter code for change of capacitance
over the temp range
X = −55 °C (−67 °F)4 = +65 °C (+149 °F)P = ±10%
Y = −30 °C (−22 °F)5 = +85 °C (+185 °F)R = ±15%
Z = +10 °C (+50 °F)6 = +105 °C (+221 °F)S = ±22%
7 = +125 °C (+257 °F)T = +22/−33%
8 = +150 °C (+302 °F)U = +22/−56%
9 = +200 °C (+392 °F)V = +22/−82%
Capacitor color code chart

For instance, a Z5U capacitor will operate from +10 °C to +85 °C with a capacitance change of at most +22% to −56%. An X7R capacitor will operate from −55 °C to +125 °C with a capacitance change of at most ±15%.

Here are some common Class 2 configurations:

Smd Capacitor Code Chart

Capacitor code chart pdf
  • X8R (−55/+150, ΔC/C0 = ±15%),
  • X7R (−55/+125 °C, ΔC/C0 = ±15%),
  • X6R (−55/+105 °C, ΔC/C0 = ±15%),
  • X5R (−55/+85 °C, ΔC/C0 = ±15%),
  • X7S (−55/+125, ΔC/C0 = ±22%),
  • Z5U (+10/+85 °C, ΔC/C0 = +22/−56%),
  • Y5V (−30/+85 °C, ΔC/C0 = +22/−82%),

Class 2 per IEC/EN 60384-9/22

Code for capacitance changeMax capacitance change
ΔC/C0 at U = 0
Max capacitance
change
ΔC/C0 at U = UN
Code for temp rangeTemp Range
2B±10%+10/−15%1−55 … +125 °C
2C±20%+20/−30%2−55 … +85 °C
2D+20/−30%+20/−40%3−40 … +85 °C
2E+22/−56%+22/−70%4−25 … +85 °C
2F+30/−80%+30/−90%5(-10 … +70) °C
2R±15%6+10 … +85 °C
2X±15%+15/−25%--
Chart

Capacitor Color Code Chart

In some cases it is possible to translate the EIA code into the IEC/EN code. Slight variations can occur, but normally are tolerable.

  • X7R correlates with 2X1
  • Z5U correlates with 2E6
  • Y5V similar to 2F4, aberration: ΔC/C0 = +30/−80% instead of +30/−82%
  • X7S similar to 2C1, aberration: ΔC/C0 = ±20% instead of ±22%
  • X8R no IEC/EN code available